Energies and analytic gradients for a coupled-cluster doubles model using variational Brueckner orbitals: Application to symmetry breaking
نویسندگان
چکیده
We describe an alternative procedure for obtaining approximate Brueckner orbitals in ab initio electronic structure theory. Whereas approximate Brueckner orbitals have traditionally been obtained by mixing the orbitals until the coefficients of singly substituted determinants in the many-electron wave function become zero, we remove singly substituted determinants at the outset and obtain orbitals which minimize the total electronic energy. Such orbitals may be described as variational Brueckner orbitals. These two procedures yield the same set of exact Brueckner orbitals in the full configuration interaction limit but differ for truncated wave functions. We consider the simplest variant of this approach in the context of coupled-cluster theory, optimizing orbitals for the coupled-cluster doubles ~CCD! model. An efficient new method is presented for solving the coupled equations defining the energy, doubles amplitudes, and orbital mixing parameters. Results for several small molecules indicate nearly identical performance between the traditional Brueckner CCD method and the variational Brueckner orbital CCD approach. However, variational Brueckner orbitals offer certain advantages: they simplify analytic gradients by removing the need to solve the coupled-perturbed Brueckner coupled-cluster equations for the orbital response, and their straightforward extensions for inactive orbitals suggests possible uses in size-extensive models of nondynamical electron correlation. Application to O4 1 demonstrates the utility of variational Brueckner orbitals in symmetry breaking cases. © 1998 American Institute of Physics. @S0021-9606~98!30235-4#
منابع مشابه
Brueckner doubles coupled cluster method with the polarizable continuum model of solvation.
We present the theory and implementation for computing the (free) energy and its analytical gradients with the Brueckner doubles (BD) coupled cluster method in solution, in combination with the polarizable continuum model of solvation (PCM). The complete model, called PTED, and an efficient approximation, called PTE, are introduced and tested with numerical examples. Implementation details are ...
متن کاملExcited states theory for optimized orbitals and valence optimized orbitals coupled-cluster doubles models
We introduce an excited state theory for the optimized orbital coupled cluster doubles ~OO-CCD! and valence optimized orbital coupled cluster doubles ~VOO-CCD! models. The equations for transition energies are derived using a similarity transformed Hamiltonian. The effects of orbital relaxation are discussed. We present results for several single-reference molecules (H2O, CH2O, C2H4O, C2H4, BeO...
متن کاملQuadratically convergent algorithm for orbital optimization in the orbital-optimized coupled-cluster doubles method and in orbital-optimized second-order Møller-Plesset perturbation theory.
Using a Lagrangian-based approach, we present a more elegant derivation of the equations necessary for the variational optimization of the molecular orbitals (MOs) for the coupled-cluster doubles (CCD) method and second-order Møller-Plesset perturbation theory (MP2). These orbital-optimized theories are referred to as OO-CCD and OO-MP2 (or simply "OD" and "OMP2" for short), respectively. We als...
متن کاملSome surprising failures of Brueckner coupled cluster theory
Brueckner coupled cluster ~B–CC! methods have seen a considerable rise in popularity over the last decade thanks, in part, to their apparent propensity for avoiding artifactual symmetry-breaking problems that sometimes plague Hartree–Fock-based approaches. Recent B–CC applications to problematic systems such as the tetraoxygen cation have provided encouraging examples of the success of this the...
متن کاملCan Single-Reference Coupled Cluster Theory Describe Static Correlation?
While restricted single-reference coupled cluster theory truncated to singles and doubles (CCSD) provides very accurate results for weakly correlated systems, it usually fails in the presence of static or strong correlation. This failure is generally attributed to the qualitative breakdown of the reference, and can accordingly be corrected by using a multideterminant reference, including higher...
متن کامل